52 research outputs found

    Biosensors based on conductometric detection

    No full text
    The present paper is a self-review on the development of about 20 conductometric biosensors based on planar electrodes and containing different biological material (enzymes, cells, antibodies), bio-mimics or synthetic membranes, including Imprinting polymers, as a sensitive element. Highly specific, sensitive, simple, fast and cheap determination of different analytes makes them promising for needs of medicine, biotechnology, environmental control, agriculture and food industry. Non-specific interference of back-ground ions may be overcome by the differential mode of measurement, the usage of rather concentrated sample buffer and additional negatively or positively charged membranes, which decrease buffer capacity influence and extend a dynamic range of sensors response. For development of easy-to-use small conductometric immunosensors several approaches seem to be promising: i) the usage of polyaniline as electroconductive label for antibodies detection in competitive electroimmunoassay; ii) the elaboration of multilayer structures with phtalocyanine films; iii) the usage of acrylic copolymeric membranes. The advantages and disadvantages of conductometric biosensors created are discussed. For future commercialisation our effort are aimed to unite a thin-film technology with membranes deposition and to find the ways of membrane stabilisation, including bio-mimics creation, utilisation of bioaffinity polymeric membranes, imprinting polymers etc.Огляд присвячСно Π°Π½Π°Π»Ρ–Π·Ρƒ власних Ρ€ΠΎΠ±Ρ–Ρ‚ Π· Ρ€ΠΎΠ·Ρ€ΠΎΠ±ΠΊΠΈ близько 20 ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів Π½Π° основі ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ΄Ρ–Π² Ρ‚Π° Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΎΠ³ΠΎ Π±Ρ–ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€Ρ–Π°Π»Ρƒ (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚ΠΈ, ΠΊΠ»Ρ–Ρ‚ΠΈΠ½ΠΈ, Π°Π½Ρ‚ΠΈΡ‚Ρ–Π»Π°), синтСтичних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ як Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… Π΅Π»Π΅ΠΌΠ΅Π½Ρ‚Ρ–Π². Висока ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ–ΡΡ‚ΡŒ, Ρ‡ΡƒΡ‚Π»ΠΈΠ²Ρ–ΡΡ‚ΡŒ, низька Ρ†Ρ–Π½Π°, простота Ρ‚Π° Π΅ΠΊΡΠΏΡ€Π΅ΡΠ½Ρ–ΡΡ‚ΡŒ визначСння Ρ€Ρ–Π·Π½ΠΎΠΌΠ°Π½Ρ–Ρ‚Π½ΠΈΡ… Ρ€Π΅Ρ‡ΠΎΠ²ΠΈΠ½ Ρ€ΠΎΠ±Π»ΡΡ‚ΡŒ біосСнсори Π½Π΅ΠΎΠ±Ρ…Ρ–Π΄Π½ΠΈΠΌΠΈ для ΠΏΠΎΡ‚Ρ€Π΅Π± ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½ΠΈ, Π±Ρ–ΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ—Ρ–, Π΅ΠΊΠΎΠ»ΠΎΠ³ΠΈ, ΡΡ–Π»ΡŒΡΡŒΠΊΠΎΠ³ΠΎ господарства Ρ‚Π° Ρ…Π°Ρ€Ρ‡ΠΎΠ²ΠΎΡ— промисловості. ΠŸΡ€ΠΈ Π°Π½Π°Π»Ρ–Π·Ρ– Ρ€Π΅Π°Π»ΡŒΠ½ΠΈΡ… Π·Ρ€Π°Π·ΠΊΡ–Π² нСспСцифічний Π²ΠΏΠ»ΠΈΠ² Ρ„ΠΎΠ½ΠΎΠ²ΠΈΡ… Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠ»Ρ–Ρ‚Ρ–Π² ΠΌΠΎΠΆΠ½Π° суттєво Π·ΠΌΠ΅Π½ΡˆΠΈΡ‚ΠΈ завдяки Π²ΠΈΠΊΠΎΡ€ΠΈΡΡ‚Π°Π½Π½ΡŽ Π΄ΠΈΡ„Π΅Ρ€Π΅Π½Ρ†Ρ–ΠΉΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΡƒ Π²ΠΈΠΌΡ–Ρ€ΡŽΠ²Π°Π½ΡŒ, Π±Ρ–Π»ΡŒΡˆ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠ²Π°Π½ΠΈΡ… Π±ΡƒΡ„Π΅Ρ€Π½ΠΈΡ… Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π², Π° Ρ‚Π°ΠΊΠΎΠΆ Π΄ΠΎΠ΄Π°Ρ‚ΠΊΠΎΠ²ΠΈΡ… Π½Π΅Π³Π°Ρ‚ΠΈΠ²Π½ΠΎ Ρ‡ΠΈ ΠΏΠΎΠ·ΠΈΡ‚ΠΈΠ²Π½ΠΎ зарядТСних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, які Π·Π°ΠΏΠΎΠ±Ρ–Π³Π°ΡŽΡ‚ΡŒ Π²ΠΏΠ»ΠΈΠ²ΠΎΠ²Ρ– Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΡ— ємності Ρ‚Π° Ρ–ΠΎΠ½Π½ΠΎΡ— сили Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ–Π² Ρ– Ρ€ΠΎΠ·ΡˆΠΈΡ€ΡŽΡŽΡ‚ΡŒ Π΄ΠΈΠ½Π°ΠΌΡ–Ρ‡Π½ΠΈΠΉ Π΄Ρ–Π°ΠΏΠ°Π·ΠΎΠ½ Ρ€ΠΎΠ±ΠΎΡ‚ΠΈ сСнсорів. Для створСння ΠΌΡ–Π½Ρ–Π°Ρ‚ΡŽΡ€Π½ΠΈΡ… імуносСнсорів Π±ΡƒΠ»ΠΎ Π·Π°ΠΏΡ€ΠΎΠΏΠΎΠ½ΠΎΠ²Π°Π½ΠΎ Ρ‚Π°ΠΊΡ– ΠΏΡ–Π΄Ρ…ΠΎΠ΄ΠΈ: Π°) використання ΠΏΠΎΠ»Ρ–Π°Π½Ρ–Π»Ρ–Π½Ρƒ як Π΅Π»Π΅ΠΊΡ‚Ρ€ΠΎΠΏΡ€ΠΎΠ²Ρ–Π΄Π½ΠΎΡ— ΠΌΡ–Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ Π²ΠΈΠ· Π½Π°Ρ‡Π΅ ΠΏΠ½Ρ– Π°Π½Ρ‚ΠΈΡ‚Ρ–Π» Ρƒ ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌΡƒ Ρ–ΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»Ρ–Π·Ρ–: Π±) створСння Π±Π°Π³Π°Ρ‚ΠΎΡˆΠ°Ρ€ΠΎΠ²ΠΈΡ… структур Π· ΠΏΠ»Ρ–Π²ΠΊΠ°ΠΌΠΈ Ρ„Ρ‚Π°Π»ΠΎΡ†Ρ–Π°Π½Ρ–Π½Ρƒ; Π²) використання Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²ΠΈΡ… сополімСрних ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±Π³ΠΎΠ²ΠΎΡ€Π΅Π½ΠΎ ΠΏΠ΅Ρ€Π΅Π²Π°Π³ΠΈ Ρ‚Π° Π½Π΅Π΄ΠΎΠ»Ρ–ΠΊΠΈ Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΈΡ… ΠΊΠΎΠ½Π΄ΡƒΠΊΡ‚ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ‡Π½ΠΈΡ… біосСнсорів. Подальша комСрціалізація Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ»Π°Π΄Ρ–Π² ΠΏΠΎΠ²'язана Π· ΠΏΠΎΡˆΡƒΠΊΠΎΠΌ ΡˆΠ»ΡΡ…Ρ–Π² стабілізації Ρ‡ΡƒΡ‚Π»ΠΈΠ²ΠΈΡ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρ‚Π° суміщСння Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Ρ–Π²ΠΊΠΎΠ²ΠΈΡ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–ΠΉ Π· нанСсСнням ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Ρƒ Ρ”Π΄ΠΈΠ½ΠΎΠΌΡƒ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³Ρ–Ρ‡Π½ΠΎΠΌΡƒ Ρ†ΠΈΠΊΠ»Ρ–.ΠžΠ±Π·ΠΎΡ€ посвящСн Π°Π½Π°Π»ΠΈΠ·Ρƒ собствСнных Ρ€Π°Π±ΠΎΡ‚ ΠΏΠΎ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ ΠΎΠΊΠΎΠ»ΠΎ 20 кондуктомСтричСских биосСнсоров Π½Π°. основС ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… элСктродов ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½ΠΎΠ³ΠΎ биологичСского ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°, (Ρ„Π΅Ρ€ΠΌΠ΅Π½Ρ‚Ρ‹, ΠΊΠ»Π΅Ρ‚ΠΊΠΈ, Π°Π½Ρ‚ΠΈΡ‚Π΅Π»Π°) ΠΈ синтСтичСских ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΎ качСствС Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… элСмСнтов. Высокая ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ, Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ, дСшСвизна, простота ΠΈ быстрота опрСдСлСния Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… вСщСств Π΄Π΅Π»Π°ΡŽΡ‚ биосСнсоры Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹ΠΌΠΈ Π² ΠΌΠ΅Π΄ΠΈΡ†ΠΈΠ½Π΅, Π±ΠΈΠΎΡ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ, экологии, сСльском хозяйствС ΠΈ ΠΏΠΈΡ‰Π΅Π²ΠΎΠΉ ΠΏΡ€ΠΎΠΌΡ‹ΡˆΠ»Π΅Π½Π½ΠΎΡΡ‚ΠΈ. ΠŸΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ Ρ€Π΅Π°Π»ΡŒΠ½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² нСспСцифичСскоС влияниС Ρ„ΠΎΠ½ΠΎΠ²Ρ‹Ρ… элСктролитов ΠΌΠΎΠΆΠ½ΠΎ ΡƒΡΡ‚Ρ€Π°Π½ΠΈΡ‚ΡŒ благодаря использованию Π΄ΠΈΡ„Ρ„Π΅Ρ€Π΅Π½Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Ρ€Π΅ΠΆΠΈΠΌΠ° ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ, Π±ΠΎΠ»Π΅Π΅ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… Π±ΡƒΡ„Π΅Ρ€Π½Ρ‹Ρ… растворов, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ заряТСнных ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½, ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°ΡŽΡ‰ΠΈΡ… влияниС Π±ΡƒΡ„Π΅Ρ€Π½ΠΎΠΉ Смкости ΠΈ ΠΈΠΎΠ½Π½ΠΎΠΉ силы растворов ΠΈ Ρ€Π°ΡΡˆΠΈΡ€ΡΡŽΡ‰ΠΈΡ… динамичСский Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½ Ρ€Π°Π±ΠΎΡ‚Ρ‹ сСнсоров. Для создания ΠΌΠΈΠ½ΠΈΠ°Ρ‚ΡŽΡ€Π½Ρ‹Ρ… иммуносСнсоров ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Ρ‹: Π°) использованиС ΠΏΠΎΠ»ΠΈΠ°Π½ΠΈΠ»ΠΈΠ½Π° ΠΊΠ°ΠΊ элСктропроводящСй ΠΌΠ΅Ρ‚ΠΊΠΈ ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π°Π½Ρ‚ΠΈΡ‚Π΅Π» Π² ΠΊΠΎΠ½ΠΊΡƒΡ€Π΅Π½Ρ‚Π½ΠΎΠΌ ΠΈΠΌΠΌΡƒΠ½ΠΎΠ°Π½Π°Π»ΠΈΠ·Π΅; Π±) созданиС многослойных структур с ΠΏΠ»Π΅Π½ΠΊΠ°ΠΌΠΈ Π½Π° основС Ρ„Ρ‚Π°Π»ΠΎΡ†ΠΈΠ°Π½ΠΈΠ½Π°; Π²) использованиС Π°ΠΊΡ€ΠΈΠ»ΠΎΠ²Ρ‹Ρ… со ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½. ΠžΠ±ΡΡƒΠΆΠ΄Π΅Π½Ρ‹ прСимущСства ΠΈ нСдостатки Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹Ρ… кондуктомСтричСских биосСнсоров. Π”Π°Π»ΡŒΠ½Π΅ΠΉΡˆΠ°Ρ коммСрциализация, Ρ‚Π°ΠΊΠΈΡ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² связана с поиском ΠΏΡƒΡ‚Π΅ΠΉ стабилизации Ρ‡ΡƒΠ²ΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ ΠΈ совмСщСния, Ρ‚ΠΎΠ½ΠΊΠΎΠΏΠ»Π΅Π½ΠΎΡ‡Π½ΠΎΠΉ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ с нанСсСниСм ΠΌΠ΅ΠΌΠ±Ρ€Π°Π½ Π² Π΅Π΄ΠΈΠ½ΠΎΠΌ тСхнологичСском Ρ†ΠΈΠΊΠ»Π΅

    TomograPy: A Fast, Instrument-Independent, Solar Tomography Software

    Full text link
    Solar tomography has progressed rapidly in recent years thanks to the development of robust algorithms and the availability of more powerful computers. It can today provide crucial insights in solving issues related to the line-of-sight integration present in the data of solar imagers and coronagraphs. However, there remain challenges such as the increase of the available volume of data, the handling of the temporal evolution of the observed structures, and the heterogeneity of the data in multi-spacecraft studies. We present a generic software package that can perform fast tomographic inversions that scales linearly with the number of measurements, linearly with the length of the reconstruction cube (and not the number of voxels) and linearly with the number of cores and can use data from different sources and with a variety of physical models: TomograPy (http://nbarbey.github.com/TomograPy/), an open-source software freely available on the Python Package Index. For performance, TomograPy uses a parallelized-projection algorithm. It relies on the World Coordinate System standard to manage various data sources. A variety of inversion algorithms are provided to perform the tomographic-map estimation. A test suite is provided along with the code to ensure software quality. Since it makes use of the Siddon algorithm it is restricted to rectangular parallelepiped voxels but the spherical geometry of the corona can be handled through proper use of priors. We describe the main features of the code and show three practical examples of multi-spacecraft tomographic inversions using STEREO/EUVI and STEREO/COR1 data. Static and smoothly varying temporal evolution models are presented.Comment: 21 pages, 6 figures, 5 table

    Primary CR energy spectrum and mass composition by the data of Tunka-133 array

    No full text
    The Cherenkov light array for the registration of extensive air showers (EAS) Tunka-133 collected data during 5 winter seasons from 2009 to 2014. The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 β‹… 1015–1018 eV measured for 1540 hours of observation are presented

    Pioneering space based detector for study of cosmic rays beyond GZK Limit

    No full text
    Space-based detectors for study of extreme energy cosmic rays (EECR) are being prepared as promising new direction of EECR study. Pioneering space device – tracking ultraviolet set up (TUS) is at the last stage of its construction and testing. TUS detector description is presented

    Pioneering space based detector for study of cosmic rays beyond GZK Limit

    No full text
    Space-based detectors for study of extreme energy cosmic rays (EECR) are being prepared as promising new direction of EECR study. Pioneering space device – tracking ultraviolet set up (TUS) is at the last stage of its construction and testing. TUS detector description is presented
    • …
    corecore